Bounds for the Average Generalization Error of the Mixture of Experts Neural Network
نویسندگان
چکیده
In this paper we derive an upper bound for the average-case generalization error of the mixture of experts modular neural network, based on an average-case generalization error bound for an isolated neural network. By doing this we also generalize a previous bound for this architecture that was restricted to special problems. We also present a correction factor for the original average generalization error, that was empirically obtained, that yields more accurate error bounds for the 6 data sets used in the experiments. These experiments illustrate the validity of the derived error bound for the mixture of experts modular neural network and show how it can be used in practice.
منابع مشابه
Prediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملModeling of measurement error in refractive index determination of fuel cell using neural network and genetic algorithm
Abstract: In this paper, a method for determination of refractive index in membrane of fuel cell on basis of three-longitudinal-mode laser heterodyne interferometer is presented. The optical path difference between the target and reference paths is fixed and phase shift is then calculated in terms of refractive index shift. The measurement accuracy of this system is limited by nonlinearity erro...
متن کاملSingularities in mixture models and upper bounds of stochastic complexity
A learning machine which is a mixture of several distributions, for example, a gaussian mixture or a mixture of experts, has a wide range of applications. However, such a machine is a non-identifiable statistical model with a lot of singularities in the parameter space, hence its generalization property is left unknown. Recently an algebraic geometrical method has been developed which enables u...
متن کاملApplication of Two Methods of Artificial Neural Network MLP, RBF for Estimation of Wind of Sediments (Case Study: Korsya of Darab Plain)
The lack of sediment gauging stations in the process of wind erosion, caused of estimate of sediment be process of necessary and important. Artificial neural networks can be used as an efficient and effective of tool to estimate and simulate sediments. In this paper two model multi-layer perceptron neural networks and radial neural network was used to estimate the amount of sediment in Korsya o...
متن کاملافزایش نرخ کارایی طبقه بندی با استفاده از تجمیع ویژگی های موثر روش های مختلف ترکیب شبکه های عصبی
Both theoretical and experimental studies have shown that combining accurate Neural Networks (NN) in the ensemble with negative error correlation greatly improves their generalization abilities. Negative Correlation Learning (NCL) and Mixture of Experts (ME), two popular combining methods, each employ different special error functions for the simultaneous training of NN experts to produce negat...
متن کامل